(1) Ammonia; NH₃; [7664-41-7]

(2) 2-Propanone (acetone); C₃H₆O; [67-64-1]

ORIGINAL MEASUREMENTS:

Short, I.; Sahgal, A.; Hayduk, W. J. Chem. Eng. Data 1983,

VARIABLES:

COMPONENTS:

T/K: 263.15, 298.15 P/kPa: 101.325

PREPARED BY:

W. Hayduk

EXPERIMENTAL VALUES:

<i>T</i> /K	Ostwald Coefficient ¹ L/cm ³ cm ⁻³	Bunsen Coefficient ² α/cm^3 (STP) $cm^{-3}atm^{-1}$	Mole Fraction ¹
263.15	70.9	73.6	0.1906
298.15	30.1	27.6	0.0842

¹Original data

The mole fraction solubility of the original data was used to determine the following equations for ΔG° and $\ln x_1$ and table of smoothed values:

$$\Delta G^{\circ}/J \text{ mol}^{-1} = -RT \ln x_1 = 707.08 T - 150277$$

 $\ln x_1 = 1831.40/T - 8.61710$

<i>T/</i> K	10 ⁻⁴ ΔG°/J mol ⁻¹	x_1
263.15	3.579	0.1906
273.15	4.286	0.1477
283.15	4.993	0.1166
293.15	5.701	0.0935
298.15	6.054	0.0842

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

A volumetric method using a glass apparatus was employed. Degassed solvent contacted the gas while flowing as a thin film, at a constant rate, through an absorption spiral into a solution buret. A constant solvent flow was obtained by means of a calibrated syringe pump. The solution at the end of the spiral was considered saturated. Dry gas was maintained at atmospheric pressure in a gas buret by mechanically raising the mercury level in the buret at an adjustable rate. The solubility was calculated from the constant slope of volume of gas dissolved and volume of solvent injected.

Degassing was accomplished using a two stage vacuum process described by Clever et al. (1).

SOURCE AND PURITY OF MATERIALS:

- Liquid Carbonic. Specified minimum purity 99.99 per cent.
- Canlab. Specified minimum purity 99.5 per cent.

ESTIMATED ERROR:

$$\delta T/K = 0.1$$

$$\delta x_1/x_1 = 0.01$$

REFERENCES:

 Clever, H.L.; Battino, R.; Saylor, J.H.; Gross, P.M.
 J. Phys. Chem. 1957, 61, 1078.

²Calculated by compiler

EXPERIMENTAL	VALUES:		-
T/K	p _{NH3} ∕ mmHg	Volume of gas, corrected to 273.2 K and 760 mmHg, dissolved by one volume of solvent.*	Mole fraction [#] ^x NH ₃
263.2	77	8.2	0.033
	163	15.7	0.061
	270	27.8	0.103
	280	29.0	0.107
	392	41.5	0.146
	482	54.0	0.182
	597	69.6	0.223
	681	82.0	0.253
	734	94.0	0.280
273.2	110	7.3	0.030
	182	11.9	0.047
	298	21.2	0.081
	321	22.9	0.087
	408	30.5	0.113
	419	31.2	0.115
	505	38.4	0.138

Values taken, by the compiler, from a graph showing experimental points which was given by the authors.

AUXILIARY INFORMATION

METHOD /APPARATUS / PROCEDURE:

Apparatus described previously was used (refs. 3, 4 and 5). quantity of gas, measured by changes in pressure of a known volume, was allowed into contact with solvent in a thermostatted absorption vessel. The liquid was magnetically stirred and the final pressure of gas in contact with solvent was measured. The authors gave the results in graphical form with volume of gas (corrected to 273.2 K and 1 atm) absorbed by one volume of solvent plotted as a function of gas pressure. One graph corresponded to pressures below 1 atm and a second graph to higher pressures.

SOURCE AND PURITY OF MATERIALS:

- Dried and purified by potassium hydroxide.
- Distilled under vacuum; chromatographic analysis indicated it to be 99.8% pure.

- Dictionary of Organic Compounds, Chapman and Hall, New York, 1982.
- Handbook of Chemistry and Physics (63rd edition), C.R.C. Press, Cleveland, Ohio, 1982.
- Cleveland, Ohio, <u>1982</u>.
 3. Braude, G. E.; Leites, I. L.; Dedova, I. V. Khim. Prom. <u>1961</u>, 232.
- Braude, G. E.; Shakhova, S. F. Khim. Prom. 1961, 177.
- Shenderei, E. R.; Zel'venskii, Ya. D.; Ivanovskii, F. P. Khim. Prom. 1960, 370.

[#] Calculated by the compiler using densities of solvent at 20 °C and 25 °C given in refs. 1 and 2. (cont.)

	Ammonia Solubilities 5		
COMPONENTS:		ORIGINAL MEASUREMENTS:	
l. Ammonia;	NH ₃ ; [7664-41-7]	Freidson, G. S.; Fur	mer, I. E.;
-	-2-pyrrolidinone;	Amelin, A. G.	
	[872-50-4]	1974, VINITI deposite	d document
Canano,	[872-30 4]	1697-74.	
EXPERIMENTA	. WALUES.		
EXPERIMENTA		Volume of gas, corrected to 273.2 K and 760 mmHg,	Mole "
T/K	$p_{\mathrm{NH}_3}^{}/\mathrm{mmHg}^{\star}$	dissolved by one volume	fraction#
	Milg	of solvent.*	^x NH₃
273.2	527	40.5	0.145
2,3.2	590	45.7	0.160
202.2	708 77	57.1 3.8	0.193 0.016
283.2	108	5.8	0.024
	170	8.3	0.034
	243	11.6	0.047
	342 364	17.0 18.1	0.067 0.071
	429	22.2	0.086
	475	24.4	0.094
	567	30.2	0.113
	631	33.9 35.8	0.126 0.132
	655 713	39.3	0.143
298.2	89	3.3	0.014
	198	6.4	0.027
	220	6.8 9.0	0.029 0.037
	301 350	10.7	0.044
	508	15.7	0.064
	576	18.3	0.073
	603	18.7	0.075 0.085
	697 736	21.6 23.7	0.083
313.2	113	2.6	0.011
	183	3.8	0.017
	278	5.9 5.9	0.025 0.025
	294 385	7.8	0.033
:	416	8.2	0.035
	512	10.4	0.044
	586	11.9 13.8	0.050 0.057
	685 701	14.2	0.059
	758	15.9	0.066
328.2	175	2.6	0.012
	285	4.3 4.6	0.019 0.020
	331 399	5.7	0.025
	479	6.7	0.029
	570	8.0	0.035
	671	9.2	0.040 0.044
242.0	740	10.2 1.2	0.006
348.2	167 273	2.2	0.010
	324	2.7	0.012
	388	3.3	0.015
	410	3.7 4.5	0.017 0.020
•	504 586	5.3	0.024
	595	5.3	0.024
1	666 681	5.9 6.2	0.027 0.028
	748	6.1	0.028
* 771,000 +2		r, from a graph showing experi	mental points
values ta	given by the compiler	ra	
# Calculate	d by the compiler.	(cont.)

COMPONENTS: ORIGINAL MEASUREMENTS:

- 1. Ammonia; NH₃; [7664-41-7]
- 2. 1-Methyl-2-pyrrolidinone;

C₅H₉NO; [872-50-4]

Freidson, G. S.; Furmer, I. E.; Amelin, A. G.

 $\frac{1974}{1697-74}$, VINITI deposited document

EXPERIMENTAL	VALUES:	Volume of gas, corrected to 273.2 K and 760 mmHg,	Mole fraction [#] ^x NH ₃	
T/K	p _{NH3} /atm*	dissolved by one volume of solvent.*		
283.2	1.10	53	0.18	
	1.92	93	0.28	
	2.96	150	0.39	
	3.85 4.23	280 295	0.54 0.56	
	4.23	319	0.50	
	4.62	532	0.69	
	4.88	572	0.71	
	5.31	806	0.77	
	5.87	1173	0.83	
298.2	1.08	29	0.11	
	2.29	58	0.20	
	3.27	104	0.31	
	5.08	198	0.46	
	6.33	305	0.57	
	6.73	378	0.62	
	7.60	497	0.68	
	8.08	636	0.73	
	9.37	1277	0.85	
313.2	3.17	61	0.21	
	5.19	116	0.34	
	6.88	176	0.44	
	7.77 9.50	228 340	0.50 0.60	
	10.27	439	0.66	
	10.50	467	0.67	
	11.58	621	0.73	
	12.60	827	0.79	
	13.75	1350	0.86	
328.2	3.75	39	0.15	
	5.29	68	0.23	
	6.25	98	0.31	
	7.31	113	0.34	
	8.46	145	0.40	
	8.77	150	0.40	
	9.52	190	0.46	
	10.58	208	0.48	
	11.62	266	0.55	
	14.69	476	0.68	
	16.15 17.56	699 849	0.76 0.79	
	19.13	1388	0.86	
	13.13	1300	0.00	

Values taken, by the compiler, from a graph showing experimental points which was given by the authors.

760 mmHg = 1 atm = 1.013×10^5 Pa.

 $^{^{\}sharp}$ Calculated by the compiler.

Ammonia Solubilities 59 ORIGINAL MEASUREMENTS: COMPONENTS: Gerrard, W.; Maladkar, V.K. Ammonia; NH₃; [7664-41-7] 1. Chem. Ind. 1970, 925-926. 1.1'-Oxybisoctane; C16H34O; Maladkar, V.K. Thesis, Univ. of [629-82-3] London, 1970 VARIABLES: PREPARED BY: P.G.T. Fogg EXPERIMENTAL VALUES: $Moles_{NH_3}/moles$ C_{16H_3+O} (1 atm) Mole fraction* T/K $x_{\rm NH_3}$ (l atm) 0.10 0.09 273.2 * Calculated by compiler $1 \text{ atm} = 1.013 \times 10^5 \text{ Pascal}$ AUXILIARY INFORMATION --METHOD /APPARATUS / PROCEDURE: SOURCE AND PURITY OF MATERIALS: Ammonia at barometric pressure was Obtained from a cylinder; dried by KOH pellets and a bubbled through a weighed quantity cold trap.

Ammonia at barometric pressure was bubbled through a weighed quantity (about 2 g) of solvent in a glass vessel held in a thermostat until saturation was achieved. The concentration of ammonia was calculated from the increase in weight of the vessel after an allowance had been made for the weight of ammonia in the gas phase above the saturated solution. Details of the apparatus are given in ref. (1).

 Dried over CaCl₂; distilled under reduced pressure.

ESTIMATED ERROR:

REFERENCES:

 Gerrard, W. "Solubility of Gases and Liquids", Plenum Press, New York, <u>1976</u>, p.3.

60 Ammonia Solubilities ORIGINAL MEASUREMENTS: COMPONENTS: 1. Ammonia; NH₃; [7664-41-7] Gerrard, W.; Maladkar, V.K. Chem. Ind. 1970, 925-926. Acetic acid, octyl ester; $C_{10}H_{20}O_{2}$; [112-14-1] Maladkar V.K. Thesis, Univ. of London, 1970. VARIABLES: PREPARED BY: P.G.T. Fogg. EXPERIMENTAL VALUES: Moles_{NH3}/moles_{C10H20O2}(1 atm) Mole fraction* T/K $x_{\rm NH}$ (1 atm) 273.2 0.222 0.285 Calculated by compiler $1 \text{ atm} = 1.013 \times 10^5 \text{ Pascal}$ AUXILIARY INFORMATION METHOD /APPARATUS / PROCEDURE: SOURCE AND PURITY OF MATERIALS: Ammonia at barometric pressure was Obtained from a cylinder; dried bubbled through a weighed quantity by KOH pellets and a cold trap. (about 2 g) of solvent in a glass vessel held in a thermostat until Dried over CaCl₂; distilled saturation was achieved. The under reduced pressure. concentration of ammonia was calculated from the increase in weight of the vessel after an allowance had been made for the weight of ammonia in the gas phase above the saturated solution. Details of the apparatus are given in ref. (1). ESTIMATED ERROR:

DITTILLID DANOK.

REFERENCES:

 Gerrard, W. "Solubility of Gases and Liquids", Plenum Press, New York, 1976, p.3.

COMPONENTS:

- 1. Ammonia; NH₃; [7664-41-7]
- Phosphorous acid, triethyl ester; C₆H₁₅O₃P; [122-52-1]

ORIGINAL MEASUREMENTS:

Maladkar, V.K. Thesis, Univ. of London, 1970.

(See also Gerrard, W.; Maladkar, V. K. Chem. Ind. 1970, 925-926).

VARIABLES:

Pressure

PREPARED BY:

P.G.T. Fogg.

EXPERIMENTAL VALUES:

T/K	$p_{ m NH_3}/{ m mmHg}$	Moles _{NH3} /moles _{C6H15O3} P	Mole fraction * "NH3
273.2	35	0.013	0.013
273.2	225	0.076	0.071
273.2	375	0.111	0.100
273.2	490	0.127	0.113
273.2	790	0.153	0.133

Experimental values were given as points on a large scale graph.

* Calculated by compiler.

760 mmHg = 1 atm = 1.013×10^5 Pa.

AUXILIARY INFORMATION

METHOD APPARATUS / PROCEDURE:

Ammonia at barometric pressure was bubbled through a weighed quantity of solvent (about 2 g) in a glass vessel at a few degrees below 273.2 K. The glass vessel was then held in a thermostat at 273.2 K and the new pressure of ammonia measured. The concentration of ammonia was calculated from the increase in weight of the vessel after an allowance had been made for the displacement of air by ammonia in the gas phase above the saturated solution.

Solubilities at low pressures were calculated from weight changes when solutions which had been previously saturated at higher pressures were allowed to come to equilibrium under a lower pressure of ammonia.

Details of the apparatus are given in ref. (1).

SOURCE AND PURITY OF MATERIALS:

- Obtained from a cylinder; dried by KOH pellets and a cold trap.
- 2. Distilled under reduced pressure.

ESTIMATED ERROR:

REFERENCES:

 Gerrard, W. "Solubility of Gases and Liquids", Plenum Press, New York, 1976, p.3.

ORIGINAL MEASUREMENTS: COMPONENTS: Maladkar, V.K. Thesis, Ammonia; NH_3 ; [7664-41-7] Univ. of London, 1970 Phosphorous acid, dibutyl ester; 2. (See also Gerrard, W.; Maladkar, V.K. C8H19O3P Chem.Ind. 1970,925-926) VARIABLES: PREPARED BY: P.G.T. Fogg.

EXPERIMENTAL VALUES:

T/K	$p_{\mathrm{NH_3}}/\mathrm{mmHg}$	Moles NH3/moles C8H19O3P	Mole fraction * "NH3"
273.2	100	0.064	0.060
273.2	200	0.106	0.096
273.2	300	0.142	0.124
273.2	500	0.202	0.168
273.2	700	0.248	0.199
273.2	750	0.260	0.206

Experimental results were presented on a large scale graph showing variation of mole ratio with pressure as a smooth curve. Numerical values given above have been taken from this curve at arbitrary pressure intervals by the compiler.

Calculated by the compiler.

AUXILIARY INFORMATION

METHOD APPARATUS / PROCEDURE:

Ammonia at barometric pressure was bubbled through a weighed quantity of solvent (about 2 g) in a glass vessel at a few degrees below 273.2K. 2. The glass vessel was then held in a thermostat at 273.2 K and the new pressure of ammonia measured. The concentration of ammonia was calculated from the increase in weight of the vessel after an allowance had been made for the displacement of air by ammonia in the gas phase above ESTIMATED ERROR: the saturated solution.

Solubilities at lower pressures were calculated from weight changes when solutions which had been previously saturated at higher pressures were allowed to come to equilibrium under a lower pressure of ammonia.

Details of the apparatus are given in ref (1).

SOURCE AND PURITY OF MATERIALS:

- Obtained from a cylinder; dried by KOH pellets and a cold trap.
- Prepared from butanol and phosphorous trichloride; distilled under reduced pressure; purity checked by infra-red spectroxopy.

REFERENCES:

"Solubility of Gerrard, W. Gases and Liquids", Plenum Press, New York, 1976. p.3.

COMPONENTS:

- Ammonia; NH₃; [7664-41-7] 1.
- Phosphorous acid, triphenyl 2. ester, C18H15O3P; [101-02-0]

ORIGINAL MEASUREMENTS:

Maladkar, V.K. Thesis, Univ. of London, 1970

(See also Gerrard, W.; Maladkar, V.K. Chem. Ind. 1970, 925-926).

VARIABLES:

PREPARED BY:

Pressure

P.G.T. Fogg.

EXPERIMENTAL VALUES:

т/к	$p_{\mathrm{NH}_3}/\mathrm{mmHg}$	Moles _{NH3} /moles C18H15O3P	Mole fraction * **NH3
293.2	60	0.0275	0.0268
293.2	125	0.0875	0.0805
293.2	295	0.1625	0.1398
293.2	425	0.2300	0.1870
293.2	485	0.2700	0.2126
293.2	750	0.3250	0.2453

Experimental values were given as points on a large scale graph.

* Calculated by compiler.

760 mmHg = 1 atm = 1.013×10^5 Pa

AUXILIARY INFORMATION

METHOD APPARATUS / PROCEDURE:

Ammonia at barometric pressure was bubbled through a weighed quantity of solvent (about 2 g) in a glass vessel at a few degrees below 293.2K. and the new pressure of ammonia measured. The concentration of ammonia was calculated from the increase in weight of the vessel after an allowance had been made for displacement of air by ammonia in the gas phase above the saturated solution. Solubilities at lower pressures were calculated from weight ESTIMATED ERROR: changes when solutions which had been previously saturated at higher pressures were allowed to come to equilibrium under a lower pressure of ammonia.

Details of the apparatus are given in ref. (1).

SOURCE AND PURITY OF MATERIALS:

- Obtained from a cylinder; dried by KOH pellets and a cold trap.
- 2. Distilled under reduced pressure.

REFERENCES:

1. Gerrard, W. "Solubility of Gases and Liquids," Plenum Press, New York, 1976, p.3.

64 Ammonia Solubilities				
COMPONENTS:	ORIGINAL MEASUREMENTS:			
1. Ammonia; NH ₃ ; [7664-41	-7] Hála, J.; Tuck, D. G.			
2. Phosphoric acid, tributy	1 ester J. Chem. Soc. (A)			
(tributyl phosphate); C [126-73-8]	12H27O4P; 1970, 3242-3246.			
VARIABLES:	PREPARED BY:			
Temperature	P. G. T. Fogg			
EXPERIMENTAL VALUES:				
T/K mol _{NH3} /mol _B	u ₃ PO ₄ (1 atm) Mole fraction*			

T/K	$_{\mathrm{NH}_{3}}^{\mathrm{mol}}$ $_{\mathrm{Bu}_{3}\mathrm{PO}_{4}}$ (1 atm)		Mole fraction $x_{ m NH_3}$ (1 atm)		
	Expt.	values	Mean	N11 3	
243.2	1.26	1.19	1.22	0.55	
253.2 263.2	0.62 0.34	0.60 0.35	0.61 0.35	0.38 0.26	
273.2	0.21	0.20	0.20	0.17	
283.2 293.2	0.16 0.11	0.15 0.10	0.15 0.10	0.13 0.09	

 $1 \text{ atm} = 1.013 \times 10^5 \text{ Pa.}$

* Calculated by compiler.

AUXILIARY INFORMATION

METHOD /APPARATUS / PROCEDURE:

Ammonia at a pressure of 1 atm was passed via a sinter disc inlet through the solvent in a thermostatted bubbling apparatus attached via taps to an evacuated sample collector. Equilibrium saturation was reached in about 1 hour but a period of 8 hours was normally allowed. Taps were then opened to let some of the saturated solution run into the sample collector which was then detached and weighed to give the weight of the sample. Contents were then distilled into standard aqueous hydrochloric acid which was subsequently back-titrated against alkali to give the weight of ammonia present.

SOURCE AND PURITY OF MATERIALS:

- 1. Obtained from Matheson Co., Ontario; dried by passing through CaO and then KOH.
- 2. Obtained from Fisher Scientific Co.; refluxed with aqueous NaOH, treated with anhydrous MgSO4, dried at 50 °C in vacuo in a stream of dry N2.

ESTIMATED ERROR:

COMPONENTS: ORIGINAL MEASUREMENTS: 1. Ammonia; NH₃; [7664-41-7] Furmer, I. E.; Amelin, A. G.; Freidson, G. S. 2. 1,2,3-Propanetriol triacetate Tr. Mosk. Khim. Teknol. Inst. (glyceryl triacetate, triacetin); 1974, 79, 96-98. [102-76-1] C₉H₁4O₆; VARIABLES: PREPARED BY: Temperature, pressure P. G. T. Fogg

EXPERIMENTAL T/K	VALUES: Henry's Constant* /mmHg	Mole fraction (1 atm)# **C9H14O6
298.2	4600	0.165
313.2	6760	0.112
328.2	9700	0.078

- Henry's constant = p_{NH_3}/x_{NH_3} where x_{NH_3} is the mole fraction of NH₃ in the liquid phase.
- Calculated by the compiler on the assumption that the Henry's law constant is valid for 1 atm.

The absorption of ammonia was measured at pressures to 1 atm at temperatures from 10 °C to 75 °C and to 20 atm at temperatures from 25 °C to 55 °C. Results were given in the form of small scale graphs and in the form of Henry's constants. One graph shows that, at each temperature, the volume of gas (corrected to 1 atm and 273.2 K) absorbed by one volume of liquid varied linearly with pressure for pressures to about 1 atm. A second graph shows that the variation was non-linear at higher pressures. Henry's law constants, H, based upon measurements at or below 1 atm, were given for three temperatures. Values were said to fit the equation:

H/mmHg = 7.03 - (1000/T).

The compiler considers that this is erroneous and that authors intended to write

 $\log_{10} (H/\text{mmHg}) = 7.03 - (1000/T)$.

AUXILIARY INFORMATION

METHOD /APPARATUS / PROCEDURE:

used (refs. 1, 2 and 3).

Apparatus described previously was A quantity of gas, measured by changes in pressure of a known volume, was allowed into contact with solvent in a

thermostatted absorption vessel. The liquid was magnetically stirred and the final pressure of gas in contact with solvent was measured.

SOURCE AND PURITY OF MATERIALS:

No information given.

ESTIMATED ERROR:

- 1. Braude, G.E.; Leites, I.L.; Dedova, I.V. Khim. Prom. 1961, 232.
- Braude, G.E.; Shakhova, S.F. Khim. Prom. 1961, 177.
 Shenderei, E.R.; Zel'venskii, Ya.D.;
- Ivanovskii, F.P. Khim. Prom. 1960, 370.

 COMPONENTS: Aramonia; NH₃; [7664-41-7] Triethoxysilane; C₆H₁₆O₃Si; [998-30-1] 			ORIGINAL MEASUREMENTS: Ditsent, V.E.; Zolotareva, M.N. Zh. Fiz. Khim. 1973, 47, 1045; Russ. J. Phys. Chem. 1973, 47, 595 (Brief details given in the above paper. Complete article deposited at VINITI. No. 5307-73, dep. from 3 Jan. 1973.)		
ARIABLES	:		PREPARED	BY:	······································
	Pressure, te	mperature		P. G.	T. Fogg
EXPERIMEN	TAL VALUES:				
T/K	$p_{\mathrm{NH}_3}^{}/\mathrm{mmHg}$	Mole fraction $^x{ m NH}_3$	T/K	$p_{\mathrm{NH_3}}/\mathrm{mmHg}$	Mole fraction x NH $_3$
273.2	100 200 300 400 500 600 700	0.0149 0.0295 0.0445 0.0595 0.0742 0.0890 0.1065	303.2	100 200 300 400 500 600 700	0.0073 0.0143 0.0213 0.0285 0.0356 0.0426 0.0499
283.2	100 200 300 400 500 600 700	0.0113 0.0223 0.0335 0.0445 0.0555 0.0665	313.2	100 200 300 400 500 600	0.0058 0.0115 0.0173 0.0227 0.0283 0.0338
293.2	100 200 300 400 500 600	0.0087 0.0179 0.0268 0.0360 0.0449 0.0535 0.0627	323.2	100 200 300 400 500 600 700	0.0051 0.0101 0.0155 0.0206 0.0258 0.0310 0.0362
		760 mmHg = 1 atm	= 1.013	× 10 ⁵ Pa.	
		AUXILIAR	Y INFORMATI	ON	

The method and apparatus are described in refs. (1) and (2).

A known weight of ammonia was dissolved in a known weight of solvent and the resulting total pressure was measured by a manometer. Temperatures were controlled to ±0.1 °C.

- To specification GOST 6221-70; dried over solid KOH; purified by vacuum distillation.
- 2. Prepared from SiHCl $_3$ and C $_2$ H $_5$ OH; chromatography indicated a purity of 99.8%.

ESTIMATED ERROR:

 $\delta T/K = \pm 0.1$

(estimated by the authors)

- Tsiklis, D. S.; Svetlova, G. M. Zh. Fiz. Khim. 1958, 32, 1476.
- Tsiklis, D. S.; Kofman, A. N.; Shenderei, L. I. Zh. Fiz. Khim. 1959, 33, 2012.